Tags

  • AWS (7)
  • Apigee (3)
  • ArchLinux (5)
  • Array (6)
  • Backtracking (6)
  • BinarySearch (6)
  • C++ (19)
  • CI&CD (3)
  • Calculus (2)
  • DesignPattern (43)
  • DisasterRecovery (1)
  • Docker (8)
  • DynamicProgramming (20)
  • FileSystem (11)
  • Frontend (2)
  • FunctionalProgramming (1)
  • GCP (1)
  • Gentoo (6)
  • Git (15)
  • Golang (1)
  • Graph (10)
  • GraphQL (1)
  • Hardware (1)
  • Hash (1)
  • Kafka (1)
  • LinkedList (13)
  • Linux (27)
  • Lodash (2)
  • MacOS (3)
  • Makefile (1)
  • Map (5)
  • MathHistory (1)
  • MySQL (21)
  • Neovim (10)
  • Network (66)
  • Nginx (6)
  • Node.js (33)
  • OpenGL (6)
  • PriorityQueue (1)
  • ProgrammingLanguage (9)
  • Python (10)
  • RealAnalysis (20)
  • Recursion (3)
  • Redis (1)
  • RegularExpression (1)
  • Ruby (19)
  • SQLite (1)
  • Sentry (3)
  • Set (4)
  • Shell (3)
  • SoftwareEngineering (12)
  • Sorting (2)
  • Stack (4)
  • String (2)
  • SystemDesign (13)
  • Terraform (2)
  • Tree (24)
  • Trie (2)
  • TwoPointers (16)
  • TypeScript (3)
  • Ubuntu (4)
  • Home

    Duck typing

    Published Feb 10, 2023 [  ProgrammingLanguage  ]

    Duck typing in computer programming is an application of the duck test—”If it walks like a duck and it quacks like a duck, then it must be a duck”—to determine whether an object can be used for a particular purpose. With nominative typing, an object is of a given type if it is declared to be (or if a type’s association with the object is inferred through mechanisms such as object inheritance). In duck typing, an object is of a given type if it has all methods and properties required by that type. Duck typing can be viewed as a usage-based structural equivalence between a given object and the requirements of a type. See structural typing for a further explanation of structural type equivalence.

    Example

    This is a simple example in Python 3 that demonstrates how any object may be used in any context, up until it is used in a way that it does not support.

    class Duck:
        def swim(self):
            print("Duck swimming")
    
        def fly(self):
            print("Duck flying")
    
    class Whale:
        def swim(self):
            print("Whale swimming")
    
    for animal in [Duck(), Whale()]:
        animal.swim()
        animal.fly()
    

    OUtput:

    Duck swimming
    Duck flying
    Whale swimming
    AttributeError: 'Whale' object has no attribute 'fly'
    

    So, if we assume everything that can swim is a duck because ducks can swim, we will consider a whale to be a duck, but, if we also assume it has to be capable of flying, the whale won’t be considered to be a duck.

    Reference