Tags

  • AWS (7)
  • Apigee (3)
  • ArchLinux (5)
  • Array (6)
  • Backtracking (6)
  • BinarySearch (6)
  • C++ (19)
  • CI&CD (3)
  • Calculus (2)
  • DesignPattern (43)
  • DisasterRecovery (1)
  • Docker (8)
  • DynamicProgramming (20)
  • FileSystem (11)
  • Frontend (2)
  • FunctionalProgramming (1)
  • GCP (1)
  • Gentoo (6)
  • Git (16)
  • Golang (1)
  • Graph (10)
  • GraphQL (1)
  • Hardware (1)
  • Hash (1)
  • Kafka (1)
  • LinkedList (13)
  • Linux (27)
  • Lodash (2)
  • MacOS (3)
  • Makefile (1)
  • Map (5)
  • MathHistory (1)
  • MySQL (21)
  • Neovim (11)
  • Network (67)
  • Nginx (6)
  • Node.js (33)
  • OpenGL (6)
  • PriorityQueue (1)
  • ProgrammingLanguage (9)
  • Python (10)
  • RealAnalysis (20)
  • Recursion (3)
  • Redis (1)
  • RegularExpression (1)
  • Ruby (19)
  • SQLite (1)
  • Sentry (3)
  • Set (4)
  • Shell (4)
  • SoftwareEngineering (12)
  • Sorting (2)
  • Stack (4)
  • String (2)
  • SystemDesign (13)
  • Terraform (2)
  • Tree (24)
  • Trie (2)
  • TwoPointers (16)
  • TypeScript (3)
  • Ubuntu (4)
  • Home

    [Understanding Analysis by Stephen Abbott] - [Chapter 4 Functional Limits and Continuity] - [4.4 Continuous Functions on Compact Sets]

    Published Jul 01, 2021 [  RealAnalysis  ]

    Theorem 4.4.1 (Preservation of Compact Sets) Let \(f \to \mathbb{R}\) be continuous on \(A\). If \(K \subseteq A\) is compact, then \(f(K)\) is compact as well.

    Theorem 4.4.2 (Extreme Value Theorem). If \(f: K \to \mathbb{R}\) is continuous on a compact set \(K \subseteq \mathbb{R}\), then \(f\) attains a maximum and minimum value. In other words, there exists \(x_0, x_1 \in K\) such that \(f(x_0) \leqslant f(x) \leqslant f(x_1)\) for all \(x \in K\)

    Definition 4.4.4 (Uniform Continuity). A function \(f: A \to R\) is uniformly continuous on \(A\) if for every \(\epsilon > 0\) there exists a \(\delta > 0\) such that for all \(x,y \in A\), \(|x - y| < \delta\) implies \(|f(x) - f(y)| < \epsilon\).

    Theorem 4.4.5 (Sequential Criterion for Absence of Uniform Continuity). A function \(f: A \to \mathbb{R}\) fails to be uniformly continuous on \(A\) if and only if there exists a particular \(\epsilon_0 > 0\) and two sequences \((x_n)\) and \((y_n)\) in \(A\) satisfying $$ |x_n - y_n| \to 0 \text{ but } |f(x_n) - f(y_n)| \geqslant \epsilon_0 $$

    Theorem 4.4.7 (Uniform Continuity on Compact Sets). A function that is continuous on a compact set \(K\) is uniformly continuous on \(K\)